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I. I NTRODUCTION

ARTIFACTS can result when reconstructing a dynamic
image sequence from inconsistent single photon emis-

sion computed tomography (SPECT) projections acquired by a
slowly rotating gantry. The artifacts can lead to biases in ki-
netic parameters estimated from time-activity curves generated
by overlaying volumes of interest on the images. To overcome
these biases in conventional image based dynamic data analysis,
we have been investigating the estimation of time-activity curves
and kinetic model parameters directly from dynamic SPECT
projection data by modeling the spatial and temporal distribu-
tion of the radiopharmaceutical throughout the projected field
of view.

In previous work we developed computationally efficient
methods for fully four-dimensional (4-D) direct estimation of
spatiotemporal distributions [1] and their statistical uncertain-
ties [2] from dynamic SPECT projection data, using a spatial
segmentation and temporal B-splines. In addition, we studied
the bias that results from modeling various orders of temporal
continuity and using various time samplings [1]. In the present
work, we use the methods developed in [1, 2] and Monte Carlo
simulations to study the effects of the temporal modeling on the
statistical variability of the reconstructed distributions.

II. FAST COMPUTATION OF STATISTICAL UNCERTAINTY

Time-varying activity concentrations within volumes of in-
terest encompassing the projected SPECT field of view can be
modeled by selecting a set of temporal basis functions capable of
representing typical time variations and having desired smooth-
ness properties. Similarly, the spatially nonuniform activity con-
centration within a particular volume of interest can be modeled
by selecting an appropriate set of spatial basis functions. Given
a set of temporal basis functions and sets of spatial basis func-
tions for the volumes of interest, coefficients for the resulting
spatiotemporal basis functions can be estimated directly from
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the SPECT projection data [1], along with the covariance ma-
trix for the coefficients [2].

Denoting the projection of themth spatial basis function along
ray i at anglej by um

ij , and the integral of thenth tempo-
ral basis function during the time interval associated with an-
gle j of rotationk by vn

jk, the projection equations can be ex-

pressed aspijk =
∑M

m=1

∑N
n=1 amnum

ij vn
jk, where thepijk are

the modeled projections, theamn are linear coefficients, and
M , N are the numbers of spatial and temporal basis func-
tions, respectively. The coefficientsamn are varied to find the
valuesâmn that minimize the sum of squares functionχ2 =∑I

i=1

∑J
j=1

∑K
k=1(p

∗
ijk − pijk)2, where thep∗

ijk are the mea-
sured projections,I is the number of projection rays per angle,
J is the number of angles per rotation, andK is the number of
rotations.

The integral of the time-activity curve model for volume of
interestm, during the time interval associated with anglej of
rotationk, can be expressed as

∑N
n=1 âmnvn

jk. Thus, given the
covariance matrix for the spatiotemporal basis function coeffi-
cientsâmn, it can be shown that the variance of each time inte-
gral is

σ2
jkm =

N∑
n=1

N∑
n′=1

vn
jk cov(âmn, âmn′) vn′

jk. (1)

Methods for quickly estimating the covariance matrix for the
coefficients were presented, benchmarked, and validated in [2].

As a figure of merit related to the global precision of the time-
activity curve model for volume of interestm, the following
expression yields a squared noise-to-signal ratio (NSR) calcu-
lated as the mean (over all of the time intervals) of the expected
values of the squared errors between the integrated intervals of
the “true” and modeled curves, normalized by the mean square
value of the integrated intervals of the “true” curve:

ξ2
m =

∑J
j=1

∑K
k=1 σ2

jkm

∑J
j=1

∑K
k=1

[∑N
n=1 âmnvn

jk

]2 . (2)

Substituting equation (1) into equation (2), the squared NSR,
ξ2
m, can be calculated quickly by rearranging the summations,

precomputing the inner products of the temporal basis functions,
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Fig. 1. Quadratic B-spline basis functions
with initial segment length of 10 sec.
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Fig. 2. Simulated teboroxime time-activity
curves.

Fig. 3. Cross section through MCAT emis-
sion phantom, showing data truncation.
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Fig. 4. Results of Monte Carlo sim-
ulations. The “∗” symbols denote
bias values observed for 1000 real-
izations of noisy projections. For
each temporal basis set, bias was cal-
culated by first calculating the mean
time-activity curve for the 1000 noisy
curves, and then calculating the root
mean square (RMS) difference be-
tween the mean noisy curve and the
simulated curve (Fig. 2). The RMS
difference was then normalized by
the RMS value for the simulated
curve and expressed as a percent-
age. The “◦” symbols denote the ob-
served NSR for each basis set, which
was calculated as the mean value
of the RMS differences between the
1000 noisy curves and the mean noisy
curve, normalized by the RMS value
of the mean noisy curve, and ex-
pressed as a percentage. The “×”
symbols denote the mean values of
the estimated NSR,ξm, calculated
using equation (3). These values
agree closely with the observed NSR
values.

νnn′
=

∑J
j=1

∑K
k=1 vn

jkvn′
jk, and exploiting the symmetry with

respect to the indicesn andn′:

ξ2
m =

∑N
n=1

∑N
n′=1 cov(âmn, âmn′)νnn′

∑N
n=1

∑N
n′=1 âmnâmn′νnn′ . (3)

III. C OMPUTERSIMULATIONS

To study the statistical variability that results from modeling
various orders of temporal continuity and using various time
samplings, 1000 realizations of cone beam projection data hav-
ing Poisson noise were generated for each of 24 sets of temporal
basis functions. Each set of temporal basis functions consisted
of N = 16 splines spanning 15 time segments having geomet-
rically increasing length (Fig. 1). Piecewise cubic, quadratic,
linear, or constant B-splines were used with initial time segment
lengths of 2.5, 5, 10, 20, 40, or 60 sec.

The simulated time-activity curves (Fig. 2) mimicked the ki-
netics of teboroxime [3]. The simulated 15 min data acquisi-
tion consisted ofI = 2048 cone beam projection rays per angle
(64 transverse× 32 axial),J = 120 angles per revolution, and

K = 15 revolutions. The amplitude of the blood input function
was adjusted so that about 10 million total events were detected.

Simulated spatial distributions were obtained using the Math-
ematical Cardiac Torso (MCAT) phantom [4]. The emission
phantom (Fig. 3) was composed of 128 contiguous 1.75 mm-
thick slices and contained the blood pool, three myocardial tis-
sue volumes of interest (normal myocardium, septal defect, and
lateral defect), liver, and background tissue. The projection bins
were 7 mm× 7 mm at the detector, and the cone beam geometry
resulted in data truncation (Fig. 3). Projections were attenuated
using the corresponding MCAT attenuation phantom. Attenu-
ation and geometric point response were modeled using a ray-
driven projector with line length weighting [5]. Scatter was not
modeled. The spatial basis functions were based on the known
segmentation of the MCAT phantom. Each volume of interest
was modeled to contain spatially uniform activity, which yielded
M = 6 spatial basis functions.

Fig. 4 shows the simulation results for the blood pool and
three myocardial tissue volumes. For each temporal basis set
and volume of interest, there was close agreement between the
sample mean of the estimated NSR,ξm, and the observed NSR,
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which was calculated as described in the caption for Fig. 4. The
effect of the polynomial order of the splines on the NSR was rel-
atively small, while the effect of the time sampling was larger.
The NSR tended to decrease as the time sampling became more
uniform (e.g., for initial time segment lengths of 40 or 60 sec).
However, the decrease in NSR was offset by an increase in bias,
which was calculated as described in the caption for Fig. 4. The
bias increased because these basis sets had initial samplings
that were too long to accurately model the beginning of the ac-
quisition, when the activity concentrations were changing most
rapidly (Fig. 2). The bias also tended to increase as the poly-
nomial order of the splines decreased. Overall, the best results
were obtained with cubic or quadratic splines having initial time
samplings of 10 sec or less. Similar findings were obtained for
the liver and background tissue volumes.

IV. D ISCUSSION

The simulation results suggest that there is benefit in model-
ing higher orders of temporal continuity, when estimating spa-
tiotemporal distributions directly from dynamic SPECT projec-
tions. In addition, the accuracy of the time modeling can be
increased substantially without unduly increasing the statistical
uncertainty, by using relatively rapid initial time sampling.

Future work includes a study of the effects of the B-spline
order and initial time sampling on nonlinear weighted least
squares estimates of compartmental model kinetic parameters
obtained from the time-activity curve models.
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